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The two-dimensional classical Hardy spaces H,(T xT) on the bidisc are intro-
duced and it is shown that the maximal operator of the Cesaro means of a distribu-
tion is bounded from H,(TxT) to L,,(Tz) (3/4<p< o) and is of weak type
(H¥(TxT), L,(T?) where the Hardy space H#(T xT) is defined by the hybrid
maximal function. As a consequence we obtain that the Cesaro means of a function
feH¥TxT)> L log L(T?) converge ae. to the function in question.  © 1997

Academic Press

1. INTRODUCTION

For double trigonometric Fourier series Marcinkievicz and Zygmund
[14] proved that the Cesaro means g, ,, f of a function fe L,(T?) con-
verge a.e. to f as n, m — oo, provided that the pairs (n, m) are in a positive
cone, i.e., provided that 2% <n/m <2° for any 6 >0. A new proof of this
result was given by the author [19]. Moreover, Zygmund [24] verified
that if /e L log L(T?) then the two-parameter Cesaro summability holds.

We proved in [20] and [19] that, in the one-dimensional case, the
maximal operator of the Cesaro means of a distribution is bounded from
the Hardy-Lorentz space H, ,(T) to L, ,(T) if 3/4<p< oo, 0<g< o0,
and that, in the two-dimensional case, it is bounded from H, ,(T?)
(#H, (TxT)) to L, ,(T?) if 5/6<p<o0, 0<g<oco, provided that the
supremum in the maximal operator is taken over a positive cone.

In this paper we generalize these results for the unrestricted maximal
operator of the two-parameter trigonometric Fourier series. The analogous
result for a two-parameter Walsh—Fourier series has been shown by the
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author [21]. The Hardy-Lorentz spaces H, ,(T xT) of distributions are
introduced with the L, ,(T?) Lorentz norms of the two-dimensional non-
tangential maximal function. Of course, H,(TxT)=H, ,(TxT) are the
usual Hardy spaces (0 <p < oo0). We will show that the maximal operator
of the Cesaro means of a distribution is bounded from H, ,(TxT) to
L, ,(T?) (3/A<p<w, 0<g<oo) and is of weak type (Hf(TxT),
L,(T?)), ie.,

sup 72( sup 10,0, /1> <C IS pzernr,  (f€HHTXT)).

y>0 n,meN

A usual density argument implies then that the Cesaro means o, ,, f con-
verge a.e. to f as n, m— oo whenever fe Hf(T xT)> L log L(T?). This
last result can be found also in Weisz [20].

I thank the referees for reading the paper carefully.

2. PRELIMINARIES AND NOTATIONS

For a set X # & let X? be its Cartesian product X x X taken with itself,
moreover, let T:=[ —=x, 7) and 1 be the Lebesgue measure. We also use
the notation |/| for the Lebesgue measure of the set /. We briefly write L,
instead of the real L,(T? 1) space while the norm (or quasinorm) of this
space is defined by ||/, :=([12 | /17 d2)'? (0<p<o0).

The distribution function of a Lebesgue-measurable function f is defined
by

M=) =2{x 1 f()I>9))  (7=0).

The weak L, space L(0<p < oo) consists of all measureable functions f
for which

1 2 :=sup y2({ /1> p})" < 0
y>0
while we set L* =L .
The spaces L) are special cases of the more general Lorentz spaces L,, .

In their definition another concept is used. For a measurable function f the
non-increasing rearrangement is defined by

fy:==inf{y : 2({|f1>7}) <1}

Lorentz space L, , is defined as follows: for 0 <p < o0, 0 <g < o0

I, = (f: F(1)9 1o dt)l/q

t
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while for 0 <p < o0

11, 2= sup £ 7(0).

>0

Let
L, =L, (T, ):={f:|fll, , <o} (j=12)
One can show the following equalities:
L,,=L,, L, =L} (0<p< o)

(see e.g. Bennett, Sharpley [ 1] or Bergh, Lofstrom [2]).

Let f be a distribution on C*(T?) (briefly f € 2'(T?)=2"). The (n, m)th
Fourier coefficient is defined by f(n, m):= f(e "~e ") where 1=./—1.
In special case, if f is an integrable function then

1 .
f(n, m)ZW L L flx, y)e " e " dx dy.

For simplicity, we assume that, for a distribution f'€ &', we have f(n,0)=
f(0,n) =0 (neN). Denote by s, ,, f the (n, m)th partial sum of the Fourier
series of a distribution f, namely,

o S = Y Y e D) e,

k=—n l=—m

For fe2' and z, :=re™, z, :=se” (0<r, s<1) let
u(zy, z,) =u(re™, se”) ;= (f = P, x P))(x, y)
where * denotes the convolution and

el 1 — r2
P - |k| jikx — T
() Lo e 1 +7r*—2r cos x (xeT)

k= —o0

is the Poisson kernel. It is easy to show that u(z,, z,) is a biharmonic func-
tion on the bidisc and

0 [e'e}
urese")= 3% fik D) rtseten

k= —w I=—w

with absolute and uniform convergence (see e.g. Gundy, Stein [12],
Edwards [8]).



CESARO SUMMABILITY 33

Let 0 <a<1 be an arbitrary number. We denote by 2,(x) (x€T) the
region bounded by two tangents to the circle |z| =a from e and the
longer arc of the circle included between the points of tangency. The non-
tangential maximal function is defined by

uk 5(x, y):= sup sup |u(zy, z,)| (0<a, p<1).
21 € Qa(x) 22€Qp(y)

For 0 < p, ¢ < o the Hardy—Lorentz space H, ,(TxT)=H, , consists of
all distributions f for which u* ;e L, , and set

HfHH,,_q = H”ik/z, 12 Hp,q .

It is known that if fe H, (0 <p < o0) then f(x, y)=lim, ;| u(re", se”) in
the sense of distributions (see Gundy, Stein [12]).

Let us introduce the hybrid Hardy spaces. For fe L,(T?) and z :=re™
(0<r<1) let

1
oz, y)=elre’, ) i=a | () P(x— ) dr

and

vi(x, y):= sup |u(z, ¥)|  (0<a<])

z€Qy(x)

We say that fe L,(T?) is in the hybrid Hardy-Lorentz space Hﬁ, TxT)
=H? if
P-4

Hf”H;q = Hvlﬁz“uq < 0.

The equivalences |u? 4l , ~ 14,12 4o 10 1y ~ 1055154 (0<p. g < .
O<a, f<l)and H, ,~H3 ~L,, (1<p<o0,0<g<o0)were proved in
Fefferman, Stein [9], Gundy, Stein [12] and Lin [13]. Note that in case
p=q the usual definition of Hardy spaces H, ,=H, and H? ,=H? are
obtained. For other equivalent definitions we call for Gundy, Stein [12],
Gundy [11] and Chang, Fefferman [4].

In this paper the constants C are absolute constants and the constants
C, (resp. C, ,) are depending only on p (resp. p and ¢) and may denote
different constants in different contexts.

Recall that, in the one-dimensional case, L,(T)cH, . (T) and

L log L(T) < H,(T), more exactly,

2l

LA gy oy =sup pAuT, > ) < C I flL (feLy(T)) (1)

y>0
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and

A ryery <C+C LS og™ LS (feL log L(T)) (2)

where log™ u= ly,.1, logu (see Fefferman, Stein [9] and Stein [18]).
These results are generalized for two parameters in the following way.

THEOREM 1. We have L log L= Hf < H,  more exactly,

1 oy, =sup yMufn 1 o> 7)< C I fllz (fEHT) (3)
y>0
and
[/l gz < C+ Cl1fTlog™ |11 (feLlogL). (4)

Proof. Applying Fubini’s theorem, (1) and the positivity of the Poisson
kernel we have
>)

[ [ty o1 Pyow—u) dr

A ((x, y): sup sup

ret e 2i(x) se™ e 21(y)

j f(t,u) P,(v—1) dt>

T

<2»<(x,y): sup j( sup

seeQip(y) T \reeQip(x)
X P (w—u)du> y>
= ‘[T J‘T 1 {supsem e H(-) ST (suprﬁn-‘egl/z(_) \ST/'(I, u) Pr(v—1t)dt]) Ps(w—u)du>y} (X, )’) dy dx

[ (e ) Po—1)de| dy dx

T

<§ L L . sup

€ 21(x)

=ij L vin(x, ) dx dy

which proves (3). (4) comes easily from (2). ||

3. ATOMIC DECOMPOSITION AND BOUNDED OPERATORS
ON HARDY SPACES

A generalized interval on T is either an interval /T or I=[ —7n, x) U
[y, ). A generalized rectangle on T? is the Descartes product IxJ of two
generalized intervals.
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A function a€ L, is a p-atom if
(i) suppacF for an open set F=T?

(ii) lall, < a(F)2=17

(1) a=3Y g Agrar where the /p’s are real numbers and the ap’s are
functions (called “elementary particles”) satisfying

() suppagzc< R for any generalized rectangle R=IxJc F

()

N N

5a1<(]>5,y) < C _ and 5aR(])vc,y) < C .
0x = /IR| ] 0y < IRl

for all N<[2/p—1/2]
(y) forall x, yeT and all M <[2/p—3/2]

| ante y)xMdx= | ap(x, )y dy=0
T T

R

If a e L, satisfies (1) with a generalized rectangle F, (ii) and (y) then a is
called a rectangle p-atom.

The basic result of the atomic decomposition is stated as follows (see
Chang, Fefferman [4], Fefferman [10], Wilson [23] and also Weisz

[21]).

THEOREM A. A distribution f is in H, (0<p<1) if and only if there
exist a sequence (a,, ke N) of p-atoms and a sequence (u,, k e N) of real
numbers such that

Uea,=f in the sense of distributions,
0

I M8

k

il” < 0.
0

I M8
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Moreover, the following equivalence of norms holds:

) O 1/p
|f|Hp~mf< 5 mm) (6)
k=0

where the infimum is taken over all decompositions of f of the form (5).

If I is a generalized interval then let 2”7 be the generalized interval with
the same center as / and with length 2" |I| (reN). For a generalized
rectangle R=1xJ let 2’"R=2"Ix2"J.

Using Theorem A, (3) and the interpolation results given in Lin [ 13] we
can prove the following theorem similarly to the Theorem of Fefferman
[10] (see also Corollary 1 in Weisz [21]).

THEOREM 2. Suppose that the operator T is sublinear and p,<p<1.
Furthermore, assume that there exists 6 >0 such that for every rectangle
p-atom a supported on the generalized rectangle R and for every r =2 one
has

f \Tal? di.< C, 2~ (7)
T2\2'R ’

where C, is a constant depending only on p. If T is bounded from L, to L,
(p=2, ) then

HTpr,ngp,q HfHHq (.fer,q)

for every po<p<oo and 0 <g< . Specially, T is of weak type (H¥, L),
ie. if fe HY then

ITf 1, o = sup pAU TS| > ) S C I flly,, S C ILf ] gz

y=0

4. CESARO SUMMABILITY OF TWO-PARAMETER
TRIGONOMETRIC-FOURIER SERIES

For n, meN and a distribution f the Cesaro mean of order (n, m) of the
Fourier series of f is given by

1 1 n m
— > ) S f=f*(K,xK,) (n, meN)

Gpmf =
] n+l m+1,=Z, =,
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where K, is the Fejér kernel of order n. It is shown in Zygmund [24] that

77,'2

0<K,()S———
(1) (n+ 1)

(0<|t| <m) (8)
and
j K, (1) di=n. (9)

For a distribution f we consider the maximal operator of the Cesaro
means

o'*fj: sup |a;7,/;7f|

n,meN

and prove our following main result.

THEOREM 3. There are absolute constants C and C, , such that

lo*flp g < Cp g 1/,  (fEH,,) (10)

for every 3/4<p < oo and 0 < g < oo. Especially, if fe Hf then

C
1(6*f>y)<; I/ ez (p>0). (11)

Proof. 1t is proved in Zygmund [24] that
lo* fl,<C, Ifl, (1<p<oo). (12)
So, by Theorem 2, the proof of Theorem 3 will be complete if we show that
the operator o* satisfies (7) for each 3/4 <p <1.
Let a be an arbitrary rectangle p-atom with support R=1xJ and
27K I n 27K, 27 E T < J|ng27F (K, LeN).
We can suppose that the center of R is zero. In this case
[—m2 K2 g2 K" 2)clc[—m2 %", 27517

and

[—n2 f 2 m27t 2] [—n27 5", 27571,



38 FERENC WEISZ
To prove (7) for the operator ¢* we have to integrate |c*a|” over
T2 \2"R=(T\2' 1) x JU (T\2'1) x (T\J)
UIx(T\2"J)U(T\I)(T\2"J)
where r > 2 is an arbitrary integer. We do this in four steps.

Step 1: Integrating over (T\2"I) x J. Obviously,

[ ] lo*atx, 17 dx dy
T\2'7 YJ

2K—1 n(i+1)2-K
< | | lo*a(x, y)17 dx dy
li| =2r=2 rni2—K J

28 —1 a(i+1)2—K
<3y | | suwp o, atx, p)I dxdy

|,-|:2r—2 ri2—K J n=ri,meN

2K —1 n(i+l)2’KJ\

+Zj

li| =22 ni2—K

sup o, ,alx, y)|” dx dy

J n<ri,meN

=(4)+(B)

where r, :=[2%/i*] (ie N) with « >0 chosen later.
It is easy to see that

L aw
(x—1)2 " (mi2 K—g2 K122 2

if xe[#ni2™%, n(i+1)27%) (]i| = 1) and te I Hence, by (8),

g, malx, y)| =

Ha(r,u)K,,(x—z)Km(y—u)dtdu

1°4J
<
I

<le

K, (x—1)dt

J a(t,u) K,,(y—u) du

I
Dz @

f a(t, ) K, (v —u) du

C22K J,I

gm La(z‘,u)Km(y—u)du

dt.
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By Holder’s inequality,

| sup o, atx p)lrdy

J n=ri,meN

22Kp

<Gire ([ ],

J meN

[ attow Ky~ d dydr)p. (16)

Using again Holder’s inequality and (12) for one dimension and for a fixed
t, we obtain

f sup

J meN

J a(t,u) K,,(y —u) du

dy

< |J|V? <f sup

T meN

2 12
dy>

J a(t,u) K,,(y—u) du

12
<cw?([ law e

By the definition of the rectangle p-atom we conclude that

[

J meN

dy dt

| att. ) K, (y =) du

12
<C? e (j [ tate. o ay

TYT
<CP27K+K/117L+L/11. (17)

Using the value of r; we can establish that

2K _1 D2Kp
A SC 27K727L+Lp27Kp+K7Lp+L
D<C X 2
2K 1 1
—r(2p—op—1
<63 Segam 19
i=2r-
provided that
2p—1
o< =2 (<), (19)
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Now let us consider (B). It is known that

O, ma(x, )= J] <L a(t,u) K,,(y —u) du> K,(x—1)dt

221; i <1 _n|‘]f€‘|1> L (L a(t,u) K, (y—u) d”> e dt ™,

k| =0

By the definition of the atom,

j <J a(t,u) K,,(y —u) du> e dl‘

<

f O a(t,u) K, (y—u) du) (e —1) dt

<]
I

<1 el [ ] attc0 Ko=)

ja(z,u)Km(y—u)du k| |t|‘dt
J

dt.

Therefore

sup [, ,alx, y)|

n<ri,meN

Lon+1—|k| ‘
<C su — || |k a(t,u) K,,(y—u) du| dt
n<r;,r€eN |](|Z:0 n+1 | || IJ\l jJ ( ) (y )
<C, Y (ri—k)2*Kj sup f a(t, ) K, (v —u) du| dt
k=0 I meN J
<C,r22-% [ sup ja(z,u)Km(y—u)du d. (20)
I meN J
It follows similarly to (16) and (17) that
2K 1
(B)<C, Y 27 %p2-R|g'-r
i=22
P
X<JI sup J a(t,u) K,,(y—u) du dydt>
1Y) meN |"J
2K
< Cp Z 27K22Kpl-72zxp27Kp2 7L+Lp27Kp+K7Lp+L
i=2r=2
2Kk
< CP Z l'*ZOLp < Cp’“27r(20(]171) (21)

i=2—2
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whenever
> 1 (22)
The number « satisfies (19) and (22) if and only if 3/4<p <1.
Combining (18) and (21) we can establish that, for 3/4 < p <1,
j j lo*a(x, y)|” dx dy < C, 2% (23)
T\2'T YJ

where C, depends only on p.

Step 2. Integrating over (T\2'I)x (T\J). Similarly to (13),

[ teatx, p)r dx dy
T\2'T “T\J

2K—1 2 =1 a4 1)2-K ar(j+1)2-L
S p

ir—K in—L
li|=2"=2 |j|=1 mi2 72

|6, mal(x, y)|” dx dy
nZ=ri,mz=s;j
2k—1 2L

i+ 12K ,n(j+1)2-L
+ Y ¥ [ sup |, alx, y)|” dx dy

li|=2"-2 |j|=1 ni2=K mj2~L n<ri,m=s;
2K—1 2 =1 a4 1)2-K ax(j+ 2L
2
+ Y > sup g, ,a(x, y)|” dx dy
M:zy—z 1jl=1 ni2—K 7:]'2’1‘

nz=ri, m<s;j
2Kk—1 2L

D I I S A LY
+ sup G, ma(x, y)|? dx dy
il =22 =1 2l w2t n<ri,m<s
=(C)+(D)+(E) +(F)

where r,:=[2%/i*] and s;:=[2%/j*] (i, je N) with «>0 chosen later.
Similarly to (15) and (17),

s, =[] attc 0 K, v =0 Ko (=) e

1 1
<c£ L Al )| R T

C22K22L 1/2
< 11V |J|"? t,u)|?dtd
oy 1R ([ ] et dra)
C 2I(+L+K/1J+L/p
y

< )
(n+1)(m+1)i%j?
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Consequently,
—1 2L—1 2Kp+Lp+K+L

)< C

( ) . %:, s /;] (}’I-+1)p(5j+1)p i2pj2p
2K_1 2L 1

—r(2p—op—1
<(jp Z Z P2p—op -przxpgcp,otz r—or : (24)

lil=2-2 j=1" J

whenever (19) holds.
We get from (14), (17) and (20) that

1
su T, m A\ X,s <C:r22 K su J‘ Cll U)| ——— dt du
n<r[,r1323j | ’ ( y)| v m>ps/ | )| (m+1)(y_u)2
<C1r227’( 1 2721‘ —K—L+K/p+L/p
m (s,+1) j?
2K/]7+L/p
<C, 5—5—-
) 1201]2701
Hence
2Kk_1 2L 21<+L
K—L —r(2ap — 1
(D C 22: Zl 2- m C,,’a2 (2ap—1) (25)
i J=

if (19) and (22) are satisfied.

Similarly,
2 K/p+Lip
sup |an,ma(x9 y)| < Cp T 02—«
n=ri,m<s; ]l
and
2k_—1 201 2K+ L
(2p —ap — 1
( ) C Z Z 2 ~- L]20c17 (2 — oc)p<Cl7 012 rer—er : (26)
i=2-2 j=1

provided that (19) and (22) are true.
We know that

ronstini= § 5 (1 B0 g perien

n+1 m+1
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Next, we establish that

1
jdtk, 1)] = ‘W J, | atx p)em =1 —1) d dy‘

G |, | e 1 ke 1] e dy

1 1/2 1/2 2 i
<—— 1 I s
ez L1 1) <j1 |, latx. dxdy)

< Cp |k| |1| 272K72L+K/p+L/p'

So

sup

n<ri,m<sj

m n+1 |k|
|0n,ma(x9 y)l < C sup z Z
n<ri,m<s; |k|=0 [I[|=0 n+1
m+1—|l]
—— |d(k, I
e D)

Z Z S _1)272K72L+K/p+L/p

1\010

< Cprlgsjgz —2K—2L+K/p+Ljp.

A simple calculation shows that

2K 1 2L 1

(F) < C Z Z 27K7Lr2pS2p272K1172L11+K+L
P r

i=2'"2 j=1

2K_1 2L

—r(2ap —1)
C Z Z szp D2ap vafxz

i=2r"2 j=1
supposed that (19) holds.
Combining (24)-(27) we can see that, for 3/4<p<1

f f lo*a(x, y)|? dx dy < Cp2";" (28)
T\2'7 YT\J

where C, depends only on p.

Steps 3 and 4, the integration over Ix(T\2'J) and over (T\[)
T\2'J), are analogous to Steps 1 and 2.

43
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Taking into account (23) and (28), we have proved (7) and also the

theorem. ||

Note that Theorem 3 was proved by the author for the one-parameter

case, for the restricted maximal operator and H,(T?) and, moreover, for
the two-parameter Walsh—Fourier series (see [20], [19], [21]).

We suspect that Theorem 3 for p <3/4 is not true though we could not

find any counterexample.

It is easy to show that the two-dimensional trigonometric polynomials

are dense in H¥ Hence (11) and the usual density argument (see
Marcinkievicz, Zygmund [ 14]) imply

CoROLLARY 1. If fe HY then
Opmf—=f a.c.as min(n, m) — oo.

Note that this corollary is proved in [20] with another method.
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