Cesàro Summability of Two-Parameter Trigonometric-Fourier Series*

Ferenc Weisz
Department of Numerical Analysis, Eötvös L. University, H-1088 Budapest, Múzeum krt. 6-8, Hungary
E-mail: weisz@ludens.elte.hu
Communicated by R. Nessel

Received April 4, 1995; accepted in revised form August 2, 1997

Abstract

The two-dimensional classical Hardy spaces $H_{p}(\mathbf{T} \times \mathbf{T})$ on the bidisc are introduced and it is shown that the maximal operator of the Cesàro means of a distribution is bounded from $H_{p}(\mathbf{T} \times \mathbf{T})$ to $L_{p}\left(\mathbf{T}^{2}\right)(3 / 4<p \leqslant \infty)$ and is of weak type $\left(H_{1}^{\#}(\mathbf{T} \times \mathbf{T}), L_{1}\left(\mathbf{T}^{2}\right)\right)$ where the Hardy space $H_{1}^{\#}(\mathbf{T} \times \mathbf{T})$ is defined by the hybrid maximal function. As a consequence we obtain that the Cesàro means of a function $f \in H_{1}^{\#}(\mathbf{T} \times \mathbf{T}) \supset L \log L\left(\mathbf{T}^{2}\right)$ converge a.e. to the function in question. © 1997 Academic Press

1. INTRODUCTION

For double trigonometric Fourier series Marcinkievicz and Zygmund [14] proved that the Cesàro means $\sigma_{n, m} f$ of a function $f \in L_{1}\left(\mathbf{T}^{2}\right)$ converge a.e. to f as $n, m \rightarrow \infty$, provided that the pairs (n, m) are in a positive cone, i.e., provided that $2^{-\delta} \leqslant n / m \leqslant 2^{\delta}$ for any $\delta \geqslant 0$. A new proof of this result was given by the author [19]. Moreover, Zygmund [24] verified that if $f \in L \log L\left(\mathbf{T}^{2}\right)$ then the two-parameter Cesàro summability holds.

We proved in [20] and [19] that, in the one-dimensional case, the maximal operator of the Cesàro means of a distribution is bounded from the Hardy-Lorentz space $H_{p, q}(\mathbf{T})$ to $L_{p, q}(\mathbf{T})$ if $3 / 4<p \leqslant \infty, 0<q \leqslant \infty$, and that, in the two-dimensional case, it is bounded from $H_{p, q}\left(\mathbf{T}^{2}\right)$ $\left(\neq H_{p, q}(\mathbf{T} \times \mathbf{T})\right)$ to $L_{p, q}\left(\mathbf{T}^{2}\right)$ if $5 / 6<p \leqslant \infty, 0<q \leqslant \infty$, provided that the supremum in the maximal operator is taken over a positive cone.

In this paper we generalize these results for the unrestricted maximal operator of the two-parameter trigonometric Fourier series. The analogous result for a two-parameter Walsh-Fourier series has been shown by the

[^0]author [21]. The Hardy-Lorentz spaces $H_{p, q}(\mathbf{T} \times \mathbf{T})$ of distributions are introduced with the $L_{p, q}\left(\mathbf{T}^{2}\right)$ Lorentz norms of the two-dimensional nontangential maximal function. Of course, $H_{p}(\mathbf{T} \times \mathbf{T})=H_{p, p}(\mathbf{T} \times \mathbf{T})$ are the usual Hardy spaces $(0<p \leqslant \infty)$. We will show that the maximal operator of the Cesàro means of a distribution is bounded from $H_{p, q}(\mathbf{T} \times \mathbf{T})$ to $L_{p, q}\left(\mathbf{T}^{2}\right) \quad(3 / 4<p \leqslant \infty, 0<q \leqslant \infty)$ and is of weak type $\left(H_{1}^{\#}(\mathbf{T} \times \mathbf{T})\right.$, $L_{1}\left(\mathbf{T}^{2}\right)$), i.e.,
$$
\sup _{\gamma>0} \gamma \lambda\left(\sup _{n, m \in \mathbf{N}}\left|\sigma_{n, m} f\right|>\gamma\right) \leqslant C\|f\|_{H_{1}{ }^{\ddagger}(\mathbf{T} \times \mathbf{T})} \quad\left(f \in H_{1}^{\ddagger}(\mathbf{T} \times \mathbf{T})\right) .
$$

A usual density argument implies then that the Cesàro means $\sigma_{n, m} f$ converge a.e. to f as $n, m \rightarrow \infty$ whenever $f \in H_{1}^{\#}(\mathbf{T} \times \mathbf{T}) \supset L \log L\left(\mathbf{T}^{2}\right)$. This last result can be found also in Weisz [20].

I thank the referees for reading the paper carefully.

2. PRELIMINARIES AND NOTATIONS

For a set $\mathbf{X} \neq \varnothing$ let \mathbf{X}^{2} be its Cartesian product $\mathbf{X} \times \mathbf{X}$ taken with itself, moreover, let $\mathbf{T}:=[-\pi, \pi)$ and λ be the Lebesgue measure. We also use the notation $|I|$ for the Lebesgue measure of the set I. We briefly write L_{p} instead of the real $L_{p}\left(\mathbf{T}^{2}, \lambda\right)$ space while the norm (or quasinorm) of this space is defined by $\|f\|_{p}:=\left(\int_{\mathbf{T}^{2}}|f|^{p} d \lambda\right)^{1 / p}(0<p \leqslant \infty)$.

The distribution function of a Lebesgue-measurable function f is defined by

$$
\lambda(\{|f|>\gamma\}):=\lambda(\{x:|f(x)|>\gamma\}) \quad(\gamma \geqslant 0) .
$$

The weak L_{p} space $L_{p}^{*}(0<p<\infty)$ consists of all measureable functions f for which

$$
\|f\|_{L_{p}^{*}}:=\sup _{\gamma>0} \gamma \lambda(\{|f|>\gamma\})^{1 / p}<\infty
$$

while we set $L_{\infty}^{*}=L_{\infty}$.
The spaces L_{p}^{*} are special cases of the more general Lorentz spaces $L_{p, q}$. In their definition another concept is used. For a measurable function f the non-increasing rearrangement is defined by

$$
\tilde{f}(t):=\inf \{\gamma: \lambda(\{|f|>\gamma\}) \leqslant t\} .
$$

Lorentz space $L_{p, q}$ is defined as follows: for $0<p<\infty, 0<q<\infty$

$$
\|f\|_{p, q}:=\left(\int_{0}^{\infty} \tilde{f}(t)^{q} t^{q / p} \frac{d t}{t}\right)^{1 / q}
$$

while for $0<p \leqslant \infty$

$$
\|f\|_{p, \infty}:=\sup _{t>0} t^{1 / p} \tilde{f}(t) .
$$

Let

$$
L_{p, q}:=L_{p, q}\left(\mathbf{T}^{j}, \lambda\right):=\left\{f:\|f\|_{p, q}<\infty\right\} \quad(j=1,2)
$$

One can show the following equalities:

$$
L_{p, p}=L_{p}, \quad L_{p, \infty}=L_{p}^{*} \quad(0<p \leqslant \infty)
$$

(see e.g. Bennett, Sharpley [1] or Bergh, Löfström [2]).
Let f be a distribution on $C^{\infty}\left(\mathbf{T}^{2}\right)$ (briefly $\left.f \in \mathscr{D}^{\prime}\left(\mathbf{T}^{2}\right)=\mathscr{D}^{\prime}\right)$. The (n, m) th Fourier coefficient is defined by $\hat{f}(n, m):=f\left(e^{-m x} e^{-m m y}\right)$ where $l=\sqrt{-1}$. In special case, if f is an integrable function then

$$
\hat{f}(n, m)=\frac{1}{(2 \pi)^{2}} \int_{\mathbf{T}} \int_{\mathbf{T}} f(x, y) e^{-m n x} e^{-m m y} d x d y
$$

For simplicity, we assume that, for a distribution $f \in \mathscr{D}^{\prime}$, we have $\hat{f}(n, 0)=$ $\hat{f}(0, n)=0(n \in \mathbf{N})$. Denote by $s_{n, m} f$ the (n, m) th partial sum of the Fourier series of a distribution f, namely,

$$
s_{n, m} f(x):=\sum_{k=-n}^{n} \sum_{l=-m}^{m} \hat{f}(k, l) e^{i k x} e^{l y}
$$

For $f \in \mathscr{D}^{\prime}$ and $z_{1}:=r e^{\imath x}, z_{2}:=s e^{l y}(0<r, s<1)$ let

$$
u\left(z_{1}, z_{2}\right)=u\left(r e^{\imath x}, s e^{\imath y}\right):=\left(f * P_{r} \times P_{s}\right)(x, y)
$$

where $*$ denotes the convolution and

$$
P_{r}(x):=\sum_{k=-\infty}^{\infty} r^{|k|} e^{t k x}=\frac{1-r^{2}}{1+r^{2}-2 r \cos x} \quad(x \in \mathbf{T})
$$

is the Poisson kernel. It is easy to show that $u\left(z_{1}, z_{2}\right)$ is a biharmonic function on the bidisc and

$$
u\left(r e^{l x}, s e^{l y}\right)=\sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \hat{f}(k, l) r^{|k|} s^{|l|} e^{l k x} e^{l y}
$$

with absolute and uniform convergence (see e.g. Gundy, Stein [12], Edwards [8]).

Let $0<\alpha<1$ be an arbitrary number. We denote by $\Omega_{\alpha}(x)(x \in \mathbf{T})$ the region bounded by two tangents to the circle $|z|=\alpha$ from $e^{t x}$ and the longer arc of the circle included between the points of tangency. The nontangential maximal function is defined by

$$
u_{\alpha, \beta}^{*}(x, y):=\sup _{z_{1} \in \Omega_{\alpha}(x)} \sup _{z_{2} \in \Omega_{\beta}(y)}\left|u\left(z_{1}, z_{2}\right)\right| \quad(0<\alpha, \beta<1) .
$$

For $0<p, q \leqslant \infty$ the Hardy-Lorentz space $H_{p, q}(\mathbf{T} \times \mathbf{T})=H_{p, q}$ consists of all distributions f for which $u_{\alpha, \beta}^{*} \in L_{p, q}$ and set

$$
\|f\|_{H_{p, q}}:=\left\|u_{1 / 2,1 / 2}^{*}\right\|_{p, q}
$$

It is known that if $f \in H_{p}(0<p<\infty)$ then $f(x, y)=\lim _{r, s \rightarrow 1} u\left(r e^{\imath x}, s e^{\imath y}\right)$ in the sense of distributions (see Gundy, Stein [12]).

Let us introduce the hybrid Hardy spaces. For $f \in L_{1}\left(\mathbf{T}^{2}\right)$ and $z:=r e e^{\ell x}$ ($0<r<1$) let

$$
v(z, y)=v\left(r e^{\imath x}, y\right):=\frac{1}{2 \pi} \int_{\mathbf{T}} f(t, y) P_{r}(x-t) d t
$$

and

$$
v_{\alpha}^{+}(x, y):=\sup _{z \in \Omega_{\alpha}(x)}|v(z, y)| \quad(0<\alpha<1) .
$$

We say that $f \in L_{1}\left(\mathbf{T}^{2}\right)$ is in the hybrid Hardy-Lorentz space $H_{p, q}^{\neq}(\mathbf{T} \times \mathbf{T})$ $=H_{p, q}^{\#}$ if

$$
\|f\|_{H_{p, q}^{\#}}:=\left\|v_{1 / 2}^{+}\right\|_{p, q}<\infty .
$$

The equivalences $\left\|u_{\alpha, \beta}^{*}\right\|_{p, q} \sim\left\|u_{1 / 2,1 / 2}^{*}\right\|_{p, q},\left\|v_{\alpha}^{+}\right\|_{p, q} \sim\left\|v_{1 / 2}^{+}\right\|_{p, q}(0<p, q<\infty$, $0<\alpha, \beta<1)$ and $H_{p, q} \sim H_{p, q}^{\#} \sim L_{p, q}(1<p<\infty, 0<q \leqslant \infty)$ were proved in Fefferman, Stein [9], Gundy, Stein [12] and Lin [13]. Note that in case $p=q$ the usual definition of Hardy spaces $H_{p, p}=H_{p}$ and $H_{p, p}^{\#}=H_{p}^{\#}$ are obtained. For other equivalent definitions we call for Gundy, Stein [12], Gundy [11] and Chang, Fefferman [4].

In this paper the constants C are absolute constants and the constants C_{p} (resp. $C_{p, q}$) are depending only on p (resp. p and q) and may denote different constants in different contexts.

Recall that, in the one-dimensional case, $L_{1}(\mathbf{T}) \subset H_{1, \infty}(\mathbf{T})$ and $L \log L(\mathbf{T}) \subset H_{1}(\mathbf{T})$, more exactly,

$$
\begin{equation*}
\|f\|_{H_{1, \infty}(\mathbf{T})}=\sup _{\gamma>0} \gamma \lambda\left(u_{1 / 2}^{*}>\gamma\right) \leqslant C\|f\|_{1} \quad\left(f \in L_{1}(\mathbf{T})\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{H_{1}(\mathbf{T})} \leqslant C+C\left\||f| \log ^{+}|f|\right\|_{1} \quad(f \in L \log L(\mathbf{T})) \tag{2}
\end{equation*}
$$

where $\log ^{+} u=1_{\{u>1\}} \log u$ (see Fefferman, Stein [9] and Stein [18]).
These results are generalized for two parameters in the following way.
Theorem 1. We have $L \log L \subset H_{1}^{\#} \subset H_{1, \infty}$ more exactly,

$$
\begin{equation*}
\|f\|_{H_{1, \infty}}=\sup _{\gamma>0} \gamma \lambda\left(u_{1 / 2,1 / 2}^{*}>\gamma\right) \leqslant C\|f\|_{H_{1}^{*}} \quad\left(f \in H_{1}^{*}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|f\|_{H_{1}^{\#}} \leqslant C+C\left\||f| \log ^{+}|f|\right\|_{1} \quad(f \in L \log L) . \tag{4}
\end{equation*}
$$

Proof. Applying Fubini's theorem, (1) and the positivity of the Poisson kernel we have

$$
\begin{aligned}
& \lambda\left((x, y): \sup _{r e^{i v} \in \Omega_{1 / 2}(x)} \sup _{\operatorname{senv} \in \Omega_{1 / 2}(y)}\left|\int_{\mathbf{T}} \int_{\mathbf{T}} f(t, u) P_{r}(v-t) P_{s}(w-u) d t d u\right|>\gamma\right) \\
& \leqslant \lambda\left((x, y): \sup _{\operatorname{sen}^{\text {ev }} \in \Omega_{1 / 2}(y)} \int_{\mathbf{T}}\left(\sup _{r e^{e v} \in \Omega_{1 / 2}(x)}\left|\int_{\mathbf{T}} f(t, u) P_{r}(v-t) d t\right|\right)\right. \\
& \left.\times P_{s}(w-u) d u>\gamma\right) \\
& =\int_{\mathbf{T}} \int_{\mathbf{T}} 1_{\left\{\sup _{s^{s e^{w} \in} \in \Omega_{1 / 2}(\cdot)} \int_{\mathbf{T}}\left(\sup _{r^{l e^{l} \in} \Omega_{1 / 2}(\cdot)}\left|\mathrm{I}_{\mathbf{T}} f(t, u) P_{r}(v-t) d t\right|\right) P_{s}(w-u) d u>\gamma\right\}}(x, y) d y d x \\
& \leqslant \frac{C}{\gamma} \int_{\mathbf{T}} \int_{\mathbf{T}} \sup _{r e^{v i} \in \Omega_{1 / 2}(x)}\left|\int_{\mathbf{T}} f(t, y) P_{r}(v-t) d t\right| d y d x \\
& =\frac{C}{\gamma} \int_{\mathbf{T}} \int_{\mathbf{T}} v_{1 / 2}^{+}(x, y) d x d y
\end{aligned}
$$

which proves (3). (4) comes easily from (2).

3. ATOMIC DECOMPOSITION AND BOUNDED OPERATORS ON HARDY SPACES

A generalized interval on \mathbf{T} is either an interval $I \subset \mathbf{T}$ or $I=[-\pi, x) \cup$ [y, π). A generalized rectangle on \mathbf{T}^{2} is the Descartes product $I \times J$ of two generalized intervals.

A function $a \in L_{2}$ is a p-atom if
(i) $\operatorname{supp} a \subset F$ for an open set $F \subset \mathbf{T}^{2}$
(ii)

$$
\|a\|_{2} \leqslant \lambda(F)^{1 / 2-1 / p}
$$

(iii) $a=\sum_{R} \lambda_{R} a_{R}$ where the λ_{R} 's are real numbers and the a_{R} 's are functions (called "elementary particles") satisfying
(α) $\operatorname{supp} a_{R} \subset R$ for any generalized rectangle $R=I \times J \subset F$
(β)

$$
\left\|\frac{\partial^{N} a_{R}(x, y)}{\partial x^{N}}\right\|_{\infty} \leqslant \frac{C}{\sqrt{|R|}|I|^{N}} \quad \text { and } \quad\left\|\frac{\partial^{N} a_{R}(x, y)}{\partial y^{N}}\right\|_{\infty} \leqslant \frac{C}{\sqrt{|R|}|J|^{N}}
$$

for all $N \leqslant[2 / p-1 / 2]$
(γ) for all $x, y \in \mathbf{T}$ and all $M \leqslant[2 / p-3 / 2]$

$$
\int_{\mathbf{T}} a_{R}(x, y) x^{M} d x=\int_{\mathbf{T}} a_{R}(x, y) y^{M} d y=0
$$

($\delta)$

$$
\left(\sum_{R} \lambda_{R}^{2}\right)^{1 / 2} \leqslant \lambda(F)^{1 / 2-1 / p}
$$

If $a \in L_{2}$ satisfies (i) with a generalized rectangle F, (ii) and (γ) then a is called a rectangle p-atom.

The basic result of the atomic decomposition is stated as follows (see Chang, Fefferman [4], Fefferman [10], Wilson [23] and also Weisz [21]).

Theorem A. A distribution f is in $H_{p}(0<p \leqslant 1)$ if and only if there exist a sequence $\left(a_{k}, k \in \mathbf{N}\right)$ of p-atoms and a sequence $\left(\mu_{k}, k \in \mathbf{N}\right)$ of real numbers such that

$$
\begin{align*}
& \sum_{k=0}^{\infty} \mu_{k} a_{k}=f \quad \text { in the sense of distributions, } \tag{5}\\
& \sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}<\infty
\end{align*}
$$

Moreover, the following equivalence of norms holds:

$$
\begin{equation*}
\|f\|_{H_{p}} \sim \inf \left(\sum_{k=0}^{\infty}\left|\mu_{k}\right|^{p}\right)^{1 / p} \tag{6}
\end{equation*}
$$

where the infimum is taken over all decompositions of f of the form (5).
If I is a generalized interval then let $2^{r} I$ be the generalized interval with the same center as I and with length $2^{r}|I|(r \in \mathbf{N})$. For a generalized rectangle $R=I \times J$ let $2^{r} R=2^{r} I \times 2^{r} J$.

Using Theorem A, (3) and the interpolation results given in Lin [13] we can prove the following theorem similarly to the Theorem of Fefferman [10] (see also Corollary 1 in Weisz [21]).

Theorem 2. Suppose that the operator T is sublinear and $p_{0}<p \leqslant 1$. Furthermore, assume that there exists $\delta>0$ such that for every rectangle p-atom a supported on the generalized rectangle R and for every $r \geqslant 2$ one has

$$
\begin{equation*}
\int_{\mathbf{T}^{2} \backslash 2^{r} R}|T a|^{p} d \lambda \leqslant C_{p} 2^{-\delta r} \tag{7}
\end{equation*}
$$

where C_{p} is a constant depending only on p. If T is bounded from L_{p} to L_{p} ($p=2, \infty$) then

$$
\|T f\|_{p, q} \leqslant C_{p, q}\|f\|_{H, q} \quad\left(f \in H_{p, q}\right)
$$

for every $p_{0}<p<\infty$ and $0<q \leqslant \infty$. Specially, T is of weak type $\left(H_{1}^{\#}, L_{1}\right)$, i.e. if $f \in H_{1}^{\#}$ then

$$
\|T f\|_{1, \infty}=\sup _{\gamma \geqslant 0} \gamma \lambda(|T f|>\gamma) \leqslant C\|f\|_{H_{1, \infty}} \leqslant C\|f\|_{H_{1}^{\#}} .
$$

4. CESÀRO SUMMABILITY OF TWO-PARAMETER TRIGONOMETRIC-FOURIER SERIES

For $n, m \in \mathbf{N}$ and a distribution f the Cesàro mean of order (n, m) of the Fourier series of f is given by

$$
\sigma_{n, m} f:=\frac{1}{n+1} \frac{1}{m+1} \sum_{k=0}^{n} \sum_{l=0}^{m} s_{k, l} f=f *\left(K_{n} \times K_{m}\right) \quad(n, m \in \mathbf{N})
$$

where K_{n} is the Fejér kernel of order n. It is shown in Zygmund [24] that

$$
\begin{equation*}
0 \leqslant K_{n}(t) \leqslant \frac{\pi^{2}}{(n+1) t^{2}} \quad(0<|t|<\pi) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{\mathbf{T}} K_{n}(t) d t=\pi . \tag{9}
\end{equation*}
$$

For a distribution f we consider the maximal operator of the Cesàro means

$$
\sigma^{*} f:=\sup _{n, m \in \mathbf{N}}\left|\sigma_{n, m} f\right|
$$

and prove our following main result.
Theorem 3. There are absolute constants C and $C_{p, q}$ such that

$$
\begin{equation*}
\left\|\sigma^{*} f\right\|_{p, q} \leqslant C_{p, q}\|f\|_{H_{p, q}} \quad\left(f \in H_{p, q}\right) \tag{10}
\end{equation*}
$$

for every $3 / 4<p<\infty$ and $0<q \leqslant \infty$. Especially, if $f \in H_{1}^{\#}$ then

$$
\begin{equation*}
\lambda\left(\sigma^{*} f>\gamma\right) \leqslant \frac{C}{\gamma}\|f\|_{H_{1}^{*}} \quad(\gamma>0) . \tag{11}
\end{equation*}
$$

Proof. It is proved in Zygmund [24] that

$$
\begin{equation*}
\left\|\sigma^{*} f\right\|_{p} \leqslant C_{p}\|f\|_{p} \quad(1<p \leqslant \infty) . \tag{12}
\end{equation*}
$$

So, by Theorem 2, the proof of Theorem 3 will be complete if we show that the operator σ^{*} satisfies (7) for each $3 / 4<p \leqslant 1$.

Let a be an arbitrary rectangle p-atom with support $R=I \times J$ and

$$
2^{-K-1}<|I| / \pi \leqslant 2^{-K}, \quad 2^{-L-1}<|J| / \pi \leqslant 2^{-L} \quad(K, L \in \mathbf{N}) .
$$

We can suppose that the center of R is zero. In this case

$$
\left[-\pi 2^{-K-2}, \pi 2^{-K-2}\right] \subset I \subset\left[-\pi 2^{-K-1}, \pi 2^{-K-1}\right]
$$

and

$$
\left[-\pi 2^{-L-2}, \pi 2^{-L-2}\right] \subset J \subset\left[-\pi 2^{-L-1}, \pi 2^{-L-1}\right] .
$$

To prove (7) for the operator σ^{*} we have to integrate $\left|\sigma^{*} a\right|^{p}$ over

$$
\begin{aligned}
\mathbf{T}^{2} \backslash 2^{r} R= & \left(\mathbf{T} \backslash 2^{r} I\right) \times J \cup\left(\mathbf{T} \backslash 2^{r} I\right) \times(\mathbf{T} \backslash J) \\
& \cup I \times\left(\mathbf{T} \backslash 2^{r} J\right) \cup(\mathbf{T} \backslash I)\left(\mathbf{T} \backslash 2^{r} J\right)
\end{aligned}
$$

where $r \geqslant 2$ is an arbitrary integer. We do this in four steps.
Step 1: Integrating over $\left(\mathbf{T} \backslash 2^{r} I\right) \times J$. Obviously,

$$
\begin{align*}
\int_{\mathbf{T} \backslash 2^{r} I} & \int_{J}\left|\sigma^{*} a(x, y)\right|^{p} d x d y \\
& \leqslant \sum_{|i|=2^{r-2}}^{2^{K}-1} \int_{\pi i 2^{-K}}^{\pi(i+1) 2^{-K}} \int_{J}\left|\sigma^{*} a(x, y)\right|^{p} d x d y \\
\leqslant & \sum_{|i|=2^{r-2}}^{2^{K}-1} \int_{\pi i 2^{-K}}^{\pi(i+1) 2^{-K}} \int_{J} \sup _{n \geqslant r_{i}, m \in \mathbf{N}}\left|\sigma_{n, m} a(x, y)\right|^{p} d x d y \\
& +\sum_{|i|=2^{r-2}}^{2^{K}-1} \int_{\pi i 2^{-K}}^{\pi(i+1) 2^{-K}} \int_{J} \sup _{n<r_{i}, m \in \mathbf{N}}\left|\sigma_{n, m} a(x, y)\right|^{p} d x d y \\
= & (A)+(B) \tag{13}
\end{align*}
$$

where $r_{i}:=\left[2^{K} / i^{\alpha}\right](i \in \mathbf{N})$ with $\alpha>0$ chosen later.
It is easy to see that

$$
\begin{equation*}
\frac{1}{(x-t)^{2}} \leqslant \frac{1}{\left(\pi i 2^{-K}-\pi 2^{-K-1}\right)^{2}} \leqslant \frac{4}{\pi^{2}} \frac{2^{2 K}}{i^{2}} \tag{14}
\end{equation*}
$$

if $x \in\left[\pi i 2^{-K}, \pi(i+1) 2^{-K}\right)(|i| \geqslant 1)$ and $t \in I$. Hence, by (8),

$$
\begin{align*}
\left|\sigma_{n, m} a(x, y)\right| & =\left|\int_{I} \int_{J} a(t, u) K_{n}(x-t) K_{m}(y-u) d t d u\right| \\
& \leqslant \int_{I}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| K_{n}(x-t) d t \\
& \leqslant C \int_{I}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| \frac{1}{(n+1)(x-t)^{2}} d t \\
& \leqslant \frac{C 2^{2 K}}{(n+1) i^{2}} \int_{I}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| d t . \tag{15}
\end{align*}
$$

By Hölder's inequality,
$\int_{J} \sup _{n \geqslant r_{i}, m \in \mathbf{N}}\left|\sigma_{n, m} a(x, y)\right|^{p} d y$

$$
\begin{equation*}
\leqslant \frac{C_{p} 2^{2 K p}}{\left(r_{i}+1\right)^{p} i^{2 p}}|J|^{1-p}\left(\int_{I} \int_{J} \sup _{m \in \mathbf{N}}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| d y d t\right)^{p} . \tag{16}
\end{equation*}
$$

Using again Hölder's inequality and (12) for one dimension and for a fixed t, we obtain

$$
\begin{aligned}
& \int_{J} \sup _{m \in \mathbf{N}}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| d y \\
& \quad \leqslant|J|^{1 / 2}\left(\int_{\mathbf{T}} \sup _{m \in \mathbf{N}}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right|^{2} d y\right)^{1 / 2} \\
& \quad \leqslant C|J|^{1 / 2}\left(\int_{J}|a(t, y)|^{2} d y\right)^{1 / 2} .
\end{aligned}
$$

By the definition of the rectangle p -atom we conclude that

$$
\begin{align*}
& \int_{I} \int_{J} \sup _{m \in \mathbf{N}}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| d y d t \\
& \quad \leqslant C|J|^{1 / 2}|I|^{1 / 2}\left(\int_{\mathbf{T}} \int_{\mathbf{T}}|a(t, y)|^{2} d y d t\right)^{1 / 2} \\
& \quad \leqslant C_{p} 2^{-K+K / p-L+L / p} . \tag{17}
\end{align*}
$$

Using the value of r_{i} we can establish that

$$
\begin{align*}
(A) & \leqslant C_{p} \sum_{i=2^{r-2}}^{2^{K}-1} 2^{-K} \frac{2^{2 K p}}{\left(r_{i}+1\right)^{p} i^{2 p}} 2^{-L+L p} 2^{-K p+K-L p+L} \\
& \leqslant C_{p} \sum_{i=2^{r-2}}^{2^{K}-1} \frac{1}{i^{2 p-\alpha p}} \leqslant C_{p, \alpha} 2^{-r(2 p-\alpha p-1)} \tag{18}
\end{align*}
$$

provided that

$$
\begin{equation*}
\alpha<\frac{2 p-1}{p}(\leqslant 1) . \tag{19}
\end{equation*}
$$

Now let us consider (B). It is known that

$$
\begin{aligned}
\sigma_{n, m} a(x, y) & =\int_{I}\left(\int_{J} a(t, u) K_{m}(y-u) d u\right) K_{n}(x-t) d t \\
& =\frac{1}{2 \pi} \sum_{|k|=0}^{n}\left(1-\frac{|k|}{n+1}\right) \int_{I}\left(\int_{J} a(t, u) K_{m}(y-u) d u\right) e^{\imath k t} d t e^{\imath k x} .
\end{aligned}
$$

By the definition of the atom,

$$
\begin{aligned}
& \left|\int_{I}\left(\int_{J} a(t, u) K_{m}(y-u) d u\right) e^{i k t} d t\right| \\
& \quad \leqslant\left|\int_{I}\left(\int_{J} a(t, u) K_{m}(y-u) d u\right)\left(e^{i k t}-1\right) d t\right| \\
& \quad \leqslant \int_{I}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| k| | t| | d t \\
& \quad \leqslant|I||k| \int_{I}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| d t
\end{aligned}
$$

Therefore

$$
\begin{align*}
& \sup _{n<r_{i}, m \in \mathbf{N}}\left|\sigma_{n, m} a(x, y)\right| \\
& \leqslant C \sup _{n<r_{i}, m \in \mathbf{N}} \sum_{|k|=0}^{n} \frac{n+1-|k|}{n+1}|I||k| \int_{I}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| d t \\
& \leqslant C_{p} \sum_{k=0}^{r_{i}}\left(r_{i}-k\right) 2^{-K} \int_{I} \sup _{m \in \mathbf{N}}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| d t \\
& \leqslant C_{p} r_{i}^{2} 2^{-K} \int_{I} \sup _{m \in \mathbf{N}}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| d t \tag{20}
\end{align*}
$$

It follows similarly to (16) and (17) that

$$
\begin{align*}
(B) \leqslant & C_{p} \sum_{i=2^{r-2}}^{2^{K}-1} 2^{-K} r_{i}^{2 p} 2^{-K p}|J|^{1-p} \\
& \times\left(\int_{I} \int_{J} \sup _{m \in \mathbf{N}}\left|\int_{J} a(t, u) K_{m}(y-u) d u\right| d y d t\right)^{p} \\
\leqslant & C_{p} \sum_{i=2^{r-2}}^{2^{K}-1} 2^{-K} 2^{2 K p} i^{-2 \alpha p} 2^{-K p} 2^{-L+L p} 2^{-K p+K-L p+L} \\
\leqslant & C_{p} \sum_{i=2^{r-2}}^{2^{2^{K}-1}} i^{-2 \alpha p} \leqslant C_{p, \alpha} 2^{-r(2 \alpha p-1)} \tag{21}
\end{align*}
$$

whenever

$$
\begin{equation*}
\alpha>\frac{1}{2 p} \tag{22}
\end{equation*}
$$

The number α satisfies (19) and (22) if and only if $3 / 4<p \leqslant 1$.
Combining (18) and (21) we can establish that, for $3 / 4<p \leqslant 1$,

$$
\begin{equation*}
\int_{\mathbf{T} \backslash 2^{r} I} \int_{J}\left|\sigma^{*} a(x, y)\right|^{p} d x d y \leqslant C_{p} 2^{-\delta r} \tag{23}
\end{equation*}
$$

where C_{p} depends only on p.
Step 2. Integrating over $\left(\mathbf{T} \backslash 2^{r} I\right) \times(\mathbf{T} \backslash J)$. Similarly to (13),

$$
\begin{aligned}
\int_{\mathbf{T} \backslash 2^{r} I} & \int_{\mathbf{T} \backslash J}\left|\sigma^{*} a(x, y)\right|^{p} d x d y \\
& \leqslant \sum_{|i|=2^{r-2}}^{2^{K}-1} \sum_{|j|=1}^{2^{L}-1} \int_{\pi i 2^{-K}}^{\pi(i+1) 2^{-K}} \int_{\pi j 2^{-L}}^{\pi(j+1) 2^{-L}} \sup _{n \geqslant r_{i}, m \geqslant s_{j}}\left|\sigma_{n, m} a(x, y)\right|^{p} d x d y \\
& +\sum_{|i|=2^{r-2}}^{2^{K}-1} \sum_{|j|=1}^{2^{L}-1} \int_{\pi i 2^{-K}}^{\pi(i+1) 2^{-K}} \int_{\pi j 2^{-L}}^{\pi(j+1) 2^{-L}} \sup _{n<r_{i}, m \geqslant s_{j}}\left|\sigma_{n, m} a(x, y)\right|^{p} d x d y \\
& +\sum_{|i|=2^{r-2}}^{2^{K}-1} \sum_{|j|=1}^{2^{L}-1} \int_{\pi i 2^{-K}}^{\pi(i+1) 2^{-K}} \int_{\pi j 2^{-L}}^{\pi(j+1) 2^{-L}} \sup _{n \geqslant r_{i}, m<s_{j}}\left|\sigma_{n, m} a(x, y)\right|^{p} d x d y \\
& +\sum_{|i|=2^{r-2}}^{2^{K}-1} \sum_{|j|=1}^{2^{L}-1} \int_{\pi i 2^{-K}}^{\pi(i+1) 2^{-K}} \int_{\pi j 2^{-L}}^{\pi(j+1) 2^{-L}} \sup _{n<r_{i}, m<s_{j}}\left|\sigma_{n, m} a(x, y)\right|^{p} d x d y \\
= & (C)+(D)+(E)+(F)
\end{aligned}
$$

where $r_{i}:=\left[2^{K} / i^{\alpha}\right]$ and $s_{j}:=\left[2^{L} / j^{\alpha}\right](i, j \in \mathbf{N})$ with $\alpha>0$ chosen later.
Similarly to (15) and (17),

$$
\begin{aligned}
\left|\sigma_{n, m} a(x, y)\right| & =\left|\int_{I} \int_{J} a(t, u) K_{n}(x-t) K_{m}(y-u) d t d u\right| \\
& \leqslant C \int_{I} \int_{J}|a(t, u)| \frac{1}{(n+1)(x-t)^{2}} \frac{1}{(m+1)(y-u)^{2}} d t d u \\
& \leqslant \frac{C 2^{2 K} 2^{2 L}}{(n+1)(m+1) i^{2} j^{2}}|I|^{1 / 2}|J|^{1 / 2}\left(\int_{I} \int_{J}|a(t, u)|^{2} d t d u\right)^{1 / 2} \\
& \leqslant \frac{C_{p} 2^{K+L+K / p+L / p}}{(n+1)(m+1) i^{2} j^{2}} .
\end{aligned}
$$

Consequently,

$$
\begin{align*}
(C) & \leqslant C_{p} \sum_{i=2^{r-2}}^{2^{K}-1} \sum_{j=1}^{2^{L}-1} 2^{-K-L} \frac{2^{K p+L p+K+L}}{\left(r_{i}+1\right)^{p}\left(s_{j}+1\right)^{p} i^{2 p} j^{2 p}} \\
& \leqslant C_{p} \sum_{|i|=2^{r-2}}^{2^{K}-1} \sum_{|j|=1}^{2^{L}-1} \frac{1}{i^{2 p-\alpha p} j^{2 p-\alpha p}} \leqslant C_{p, \alpha} 2^{-r(2 p-\alpha p-1)} \tag{24}
\end{align*}
$$

whenever (19) holds.
We get from (14), (17) and (20) that

$$
\begin{aligned}
\sup _{n<r_{i}, m \geqslant s_{j}}\left|\sigma_{n, m} a(x, y)\right| & \leqslant C_{p} r_{i}^{2} 2^{-K} \sup _{m \geqslant s_{j}} \int_{I} \int_{J}|a(t, u)| \frac{1}{(m+1)(y-u)^{2}} d t d u \\
& \leqslant C_{p} r_{i}^{2} 2^{-K} \frac{1}{\left(s_{j}+1\right)} \frac{2^{2 L}}{j^{2}} 2^{-K-L+K / p+L / p} \\
& \leqslant C_{p} \frac{2^{K / p+L / p}}{i^{2 \alpha} j^{2-\alpha}} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
(D) \leqslant C_{p} \sum_{i=2^{r-2}}^{2^{K}-1} \sum_{j=1}^{2^{L}-1} 2^{-K-L} \frac{2^{K+L}}{i^{2 \alpha p} j^{(2-\alpha) p}} \leqslant C_{p, \alpha} 2^{-r(2 \alpha p-1)} \tag{25}
\end{equation*}
$$

if (19) and (22) are satisfied.
Similarly,

$$
\sup _{n \geqslant r_{i}, m<s_{j}}\left|\sigma_{n, m} a(x, y)\right| \leqslant C_{p} \frac{2^{K / p+L / p}}{j^{2 \alpha} i^{2-\alpha}}
$$

and

$$
\begin{equation*}
(E) \leqslant C_{p} \sum_{i=2^{r-2}}^{2^{K}-1} \sum_{j=1}^{2^{L}-1} 2^{-K-L} \frac{2^{K+L}}{j^{2 \alpha p}} i^{(2-\alpha) p} \leqslant C_{p, \alpha} 2^{-r(2 p-\alpha p-1)} \tag{26}
\end{equation*}
$$

provided that (19) and (22) are true.
We know that

$$
\sigma_{n, m} a(x, y)=\sum_{|k|=0}^{n} \sum_{|l|=0}^{m}\left(1-\frac{|k|}{n+1}\right)\left(1-\frac{|l|}{m+1}\right) \hat{a}(k, l) e^{i k x+l l y} .
$$

Next, we establish that

$$
\begin{aligned}
|\hat{a}(k, l)| & =\left|\frac{1}{(2 \pi)^{2}} \int_{I} \int_{J} a(x, y)\left(e^{-l k x}-1\right)\left(e^{-l l y}-1\right) d x d y\right| \\
& \leqslant \frac{1}{(2 \pi)^{2}} \int_{I} \int_{J}|a(x, y)||k x||l y| d x d y \\
& \leqslant \frac{1}{(2 \pi)^{2}}|k||l||I||J||I|^{1 / 2}|J|^{1 / 2}\left(\int_{I} \int_{J}|a(x, y)|^{2} d x d y\right)^{1 / 2} \\
& \leqslant C_{p}|k||l| 2^{-2 K-2 L+K / p+L / p} .
\end{aligned}
$$

So

$$
\begin{aligned}
\sup _{n<r_{i}, m<s_{j}}\left|\sigma_{n, m} a(x, y)\right| \leqslant & C \sup _{n<r_{i}, m<s_{j}} \sum_{|k|=0}^{n} \sum_{|l|=0}^{m} \frac{n+1-|k|}{n+1} \\
& \times \frac{m+1-|l|}{m+1}|\hat{a}(k, l)| \\
\leqslant & C_{p} \sum_{k=0}^{r_{i}} \sum_{l=0}^{s_{j}}\left(r_{i}-k\right)\left(s_{j}-l\right) 2^{-2 K-2 L+K / p+L / p} \\
\leqslant & C_{p} r_{i}^{2} s_{j}^{2} 2^{-2 K-2 L+K / p+L / p} .
\end{aligned}
$$

A simple calculation shows that

$$
\begin{aligned}
(F) & \leqslant C_{p} \sum_{i=2^{r-2}}^{2^{K}-1} \sum_{j=1}^{2^{L}-1} 2^{-K-L} r_{i}^{2 p} S_{j}^{2 p} 2^{-2 K p-2 L p+K+L} \\
& \leqslant C_{p} \sum_{i=2^{r-2}}^{2^{K}-1} \sum_{j=1}^{2^{L}-1} \frac{1}{i^{2 \alpha p} j^{2 \alpha p}} \leqslant C_{p, \alpha} 2^{-r(2 \alpha p-1)}
\end{aligned}
$$

supposed that (19) holds.
Combining (24)-(27) we can see that, for $3 / 4<p \leqslant 1$,

$$
\begin{equation*}
\int_{\mathbf{T} \backslash 2^{r} I} \int_{\mathbf{T} \backslash J}\left|\sigma^{*} a(x, y)\right|^{p} d x d y \leqslant C_{p} 2^{-\delta r} \tag{28}
\end{equation*}
$$

where C_{p} depends only on p.
Steps 3 and 4, the integration over $I \times\left(\mathbf{T} \backslash 2^{r} J\right)$ and over $(\mathbf{T} \backslash I) \times$ ($\mathbf{T} \backslash 2^{r} J$), are analogous to Steps 1 and 2.

Taking into account (23) and (28), we have proved (7) and also the theorem.

Note that Theorem 3 was proved by the author for the one-parameter case, for the restricted maximal operator and $H_{p}\left(\mathbf{T}^{2}\right)$ and, moreover, for the two-parameter Walsh-Fourier series (see [20], [19], [21]).

We suspect that Theorem 3 for $p \leqslant 3 / 4$ is not true though we could not find any counterexample.

It is easy to show that the two-dimensional trigonometric polynomials are dense in $H_{1}^{\#}$. Hence (11) and the usual density argument (see Marcinkievicz, Zygmund [14]) imply

Corollary 1. If $f \in H_{1}^{\#}$ then

$$
\sigma_{n, m} f \rightarrow f \quad \text { a.e. as } \quad \min (n, m) \rightarrow \infty
$$

Note that this corollary is proved in [20] with another method.

REFERENCES

1. C. Bennett and R. Sharpley, "Interpolation of Operators," Pure and Applied Mathematics, Vol. 129, Academic Press, New York, 1988.
2. J. Bergh and J. Löfström, "Interpolation Spaces, an Introduction," Springer-Verlag, Berlin/Heidelberg/New York, 1976.
3. D. L. Burkholder, R. F. Gundy, and M. L. Silverstein, A maximal function characterization of the class H^{p}, Trans. Amer. Math. Soc. 157 (1971), 137-153.
4. S.-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and H^{p}-theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43.
5. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
6. P. Duren, "Theory of H^{p} Spaces," Academic Press, New York, 1970.
7. R. E. Edwards, "Fourier Series, A Modern Introduction," Vol. 1, Springer-Verlag, Berlin/ Heidelberg/New York, 1982.
8. R. E. Edwards, "Fourier Series, A Modern Introduction," Vol. 2, Springer-Verlag, Berlin/ Heidelberg/New York, 1982.
9. C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math. 129 (1972), 137-194.
10. R. Fefferman, Calderon-Zygmund theory for product domains: H^{p} spaces, Proc. Natl. Acad. Sci. USA 83 (1986), 840-843.
11. R. F. Gundy, "Maximal Function Characterization of H^{p} for the Bidisc," Lecture Notes in Math., Vol. 781, pp. 51-58, Springer-Verlag, Berlin/Heidelberg/New York, 1982.
12. R. F. Gundy and E. M. Stein, H^{p} theory for the poly-disc, Proc. Natl. Acad. Sci. USA 76 (1979), 1026-1029.
13. K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96.
14. J. Marcinkievicz and A. Zygmund, On the summability of double Fourier series, Fund. Math. 32 (1939), 122-132.
15. F. Móricz, F. Schipp, and W. R. Wade, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc. 329 (1992), 131-140.
16. F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest Sect. Math. 18 (1975), 189-195.
17. F. Schipp and P. Simon, On some (H, L_{1})-type maximal inequalities with respect to the Walsh-Paley system, in "Conference on Functions, Series, and Operators, Budapest, 1980," Colloquia Math. Society Janos Bolyai, Vol. 35, pp. 1039-1045, North-Holland, Amsterdam, 1981.
18. E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Univ. Press, Princeton, NJ, 1970.
19. F. Weisz, Cesàro summability of multi-dimensional trigonometric-Fourier series, J. Math. Anal. Appl. 204 (1996), 419-431.
20. F. Weisz, Cesàro summability of one- and two-dimensional trigonometric-Fourier series, Colloq. Math. (1997), to appear.
21. F. Weisz, Cesàro summability of two-parameter Walsh-Fourier series, J. Approx. Theory 88 (1997), 168-192.
22. F. Weisz, "Martingale Hardy Spaces and Their Applications in Fourier Analysis," Lecture Notes in Math., Vol. 1568, Springer-Verlag, Berlin/Heidelberg/New York, 1994.
23. J. M. Wilson, On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), 201-207.
24. A. Zygmund, "Trigonometric Series," Cambridge Univ. Press, London, 1959.

[^0]: * This research was partly supported by the Hungarian Scientific Research Funds (OTKA) Grant F019633.

